Some Results on Kloosterman Sums and their Minimal Polynomials
نویسندگان
چکیده
This paper introduces two new results on Kloosterman sums and their minimal polynomials. We characterise ternary Kloosterman sums modulo 27. We also prove a congruence concerning the minimal polynomial over Q of a Kloosterman sum. This paper also serves as a survey of our recent results on binary Kloosterman sums modulo 16, 32, 64 and 128 with Petr Lisoněk.
منابع مشابه
On divisibility of exponential sums of polynomials of special type over fields of characteristic 2
We study divisibility by eight of exponential sums of several classes of functions over finite fields of characteristic two. For the binary classical Kloosterman sums K(a) over such fields we give a simple recurrent algorithm for finding the largest k, such that 2 divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.
متن کاملKloosterman Sum Identities over F 2 m Henk
We introduce Kloosterman polynomials over F2m , and use these polynomials to prove three identities involving Kloosterman sums over F2m .
متن کاملThe divisibility modulo 24 of Kloosterman sums on GF(2m), m even
In a recent work by Charpin, Helleseth, and Zinoviev Kloosterman sums K(a) over a finite field F2m with m even were evaluated modulo 24 in the case m odd, and the number of those a giving the same value for K(a) modulo 24 was given. In this paper the same is done in the case m even. The key techniques used in this paper are different from those used in the aforementioned work. In particular, we...
متن کاملA transform property of Kloosterman sums
An expression for the number of times a certain trace function associated with a Kloosterman sum on an extension field assumes a given value in the base field is given and its properties explored. The relationship of this result to the enumeration of certain types of irreducible polynomials over fields of characteristic two or three and to the weights in the dual of a Melas code is considered. ...
متن کاملSome Notes on Trigonometric Sums
1 Trigonometric Sums 1 1.1 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Kloosterman Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Geometrization 2 2.1 A Lemma on Torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Artin-Shreier Sheaves . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011